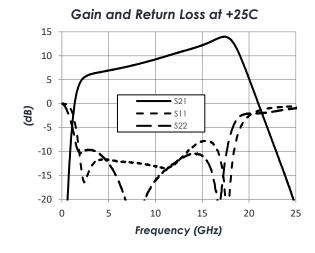
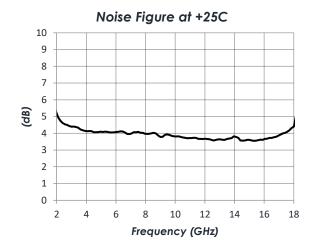


Description

AM1110-D is a wideband, cascadable amplifier servicing the 2 to 18 GHz frequency range. The device exhibits low gain at the lower frequencies and ascends smoothly to moderate gain at the higher frequencies. The increasing gain across frequency makes the AM1110-D an ideal solution to equalize gain/insertion loss across an RF system.

Available as bare die in a 1.34mm x 0.91mm footprint with internal DC blocking capacitors.


Features

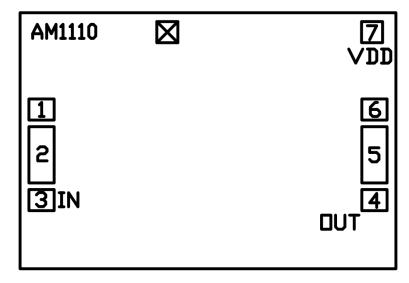

- 8.9 dB Gain Slope
- 4.6 dB Gain at 2 GHz
- 13.5 dB Gain at 18 GHz
- +30 dBm OIP3
- +17 dBm P1dB
- +3.3V Operation
- 215 mW Power Consumption
- -40C to +85C Operation

Functional Diagram

Characteristic Performance

1

Table of Contents


Description1	Thermal Information
Features1	DC Electrical Characteristics5
Functional Diagram1	RF Performance5
Characteristic Performance1	Typical Performance
Revision History2	Typical Application8
Pin Layout and Definitions3	Die Dimensions
Specifications4	Part Ordering Details
Absolute Maximum Ratings4	Recommended Wire Bonds 10
Handling Information4	Related Parts10
Recommended Operating Conditions4	Component Compliance Information 11

Revision History

Date	Revision Number	Notes
April 20, 2022	1	Initial Release
April 12, 2024	2	Updated Plots and Diagrams

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function	
1	GND	Ground - Common	
2	RF In	RF Input – 50 Ohms – AC Coupled	
3, 4	GND	Ground - Common	
5	RF Out	RF Output – 50 Ohms – AC Coupled	
6	GND	Ground - Common	
7	Vd	DC Power Input	

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+4.0
RF Input Power		+20dBm
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
ESD Sensitivity – Human Body Model (HBM)	Class 1A	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+3.0 V	+3.3 V	+3.5 V
Operating Case Temperature	-40 C		+85 C

Thermal Information

Thermal Resistance (channel to backside ground)	298 C/W
Nominal Junction Temperature at +85C Ambient	150 C
Channel Temperature to Maintain 1 Million Hour MTTF	+175 C

AM1110-D - Amplifier

2 to 18 GHz Slope Correcting Amplifier

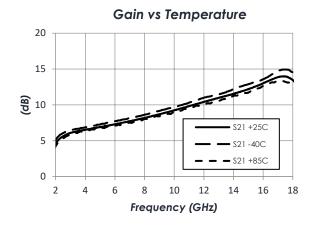
DC Electrical Characteristics

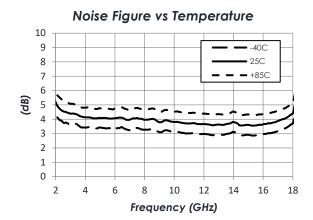
(T = 25 °C unless otherwise specified)

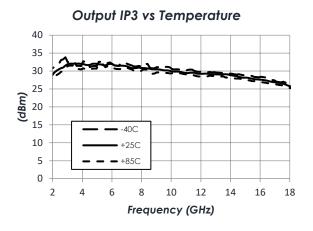
Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage			+3.3 V	
DC Supply Current	Vd = +3.3 V	56 mA	62 mA	68 mA
Power Dissipated	Vd = +3.3 V	185 mW		225 mW

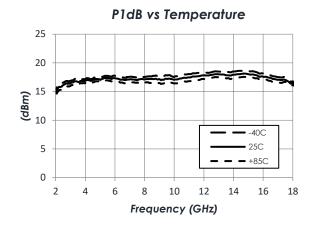
RF Performance

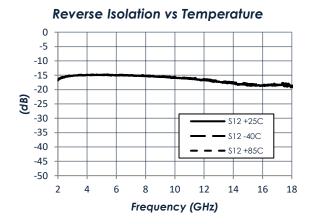
(T = 25 °C unless otherwise specified)

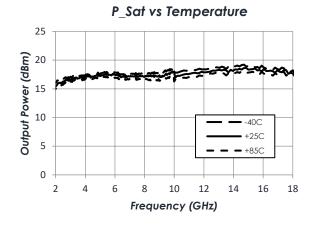

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		2 GHz		18 GHz
Gain	f = 2 GHz		4.6 dB	
	f = 10 GHz		9.2 dB	
	f = 18 GHz		13.4 dB	
Return Loss	f = 2 GHz		-10 dB	
	f = 10 GHz		-13 dB	
	f = 18 GHz		-10 dB	
Output IP3	f = 10 GHz		+30 dBm	
Output P1dB	f = 10 GHz		+17 dBm	
Noise Figure	f = 10 GHz		3.8 dB	

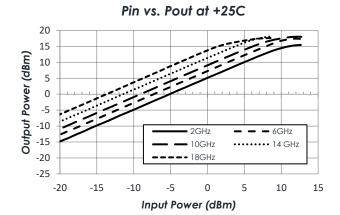

Note: OIP3 measured with two tones at 10 MHz spacing with -10dBm input power



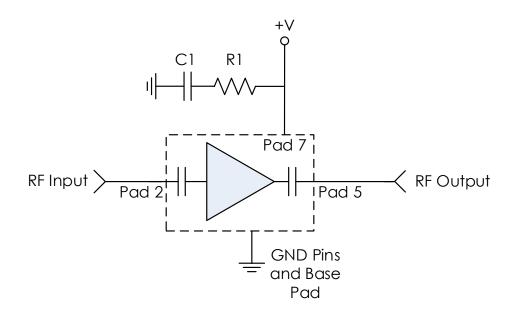

Typical Performance


(VDD=3.3V and T=25C unless otherwise specified.)



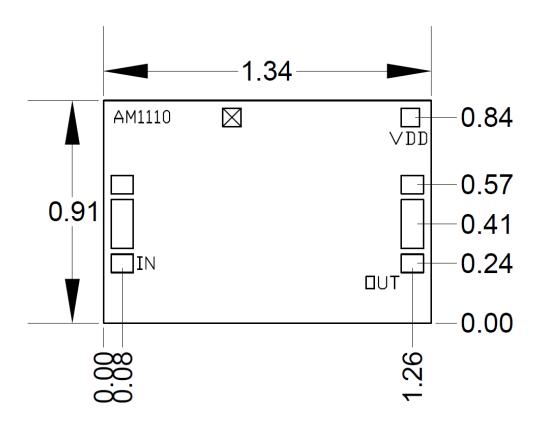


Typical Performance (continued)


(VDD=3.3V and T=25C unless otherwise specified.)

Typical Application

Recommended Component List (or equivalent):

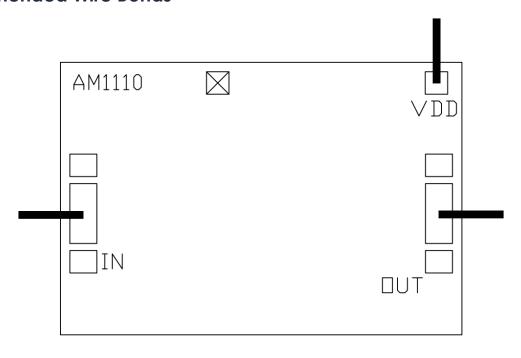

Part	Value	Part Number	Manufacturer
C1	100 pF	SKT01A101Z10A6	Tecdia
R1	10 Ω	TDR-100F-9x12x6-E	Tecdia

Notes:

- 1. R1 and C1 are required for proper operation of the AM1110-D.
- 2. RF Input and RF Output connections are internally DC blocked.

Die Dimensions

Notes:


1. Units in mm.

Part Ordering Details

Description	Part Number
1.34mm x 0.91mm Bare Die	AM1110-D
3mm 12 Lead QFN	AM1110
AM1110 3mm QFN Evaluation Board	AM1110 Fval

Recommended Wire Bonds

Notes:

- 1. RF pads should have one bond.
- 2. All bonds should be minimum length and minimum loop height for optimum performance.
- 3. Bonds should be 1mil, gold.

Related Parts

Part Number		Description		
AM1102-D	20 MHz	to 22 GHz	Low Noise Amplifier	
AM1113-D	2 GHz	to 18 GHz	Slope Correcting Amplifier, 7dB Slope	
AM1114-D	2 GHz	to 18 GHz	Slope Correcting Amplifier, 5dB Slope	

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.