2 to 18 GHz Slope Correcting Gain Block

## Description

**Features** 

•

•

•

•

15

10

5

(**dB**)

-5

-10

-15

-20

0

۲

11

5

AM1114-D is a wideband, cascadable amplifier servicing the 2 to 18 GHz frequency range. The device exhibits low gain at the lower frequencies ascending to moderate gain at the higher frequencies. The increasing gain across frequency makes the AM1114-D an ideal solution to equalize gain/insertion loss across an RF system. Available as bare die in a 1.34mm x 0.91mm footprint with internal DC blocking capacitors and 50 $\Omega$  matching.

## **Functional Diagram**



+3.3V Operation

5.1 dB Gain Slope

6.3 dB Gain at 2 GHz

11.4 dB Gain at 18 GHz

- 205 mW Power Consumption
- 1.34mm x 0.91mm
- -40C to +85C Operation

# Characteristic Performance

Gain and Return Loss at +25C

S21

S22

Frequency (GHz)

15

- S11

10



25

20











Mercury ATLA



2 to 18 GHz Slope Correcting Gain Block

## **Table of Contents**

| Description                                                                       | 1           |
|-----------------------------------------------------------------------------------|-------------|
| Features                                                                          | 1           |
| Functional Diagram                                                                | 1           |
| Characteristic Performance                                                        | 1           |
| Revision History                                                                  | 2           |
| Pin Layout and Definitions                                                        | 3           |
| Specifications                                                                    | 4           |
| Absolute Maximum Ratinas                                                          | 4           |
|                                                                                   |             |
| Handling Information                                                              | 4           |
| Handling Information<br>Recommended Operating Conditions4                         | 4<br>4      |
| Handling Information<br>Recommended Operating Conditions4<br>Thermal Information4 | 4<br>4<br>4 |

| DC Electrical Characteristics      | 5 |
|------------------------------------|---|
| RF Performance                     | 5 |
| Typical Performance                | 6 |
| Typical Performance Continued      | 7 |
| Typical Application                | 8 |
| Die Dimensions                     | 9 |
| Part Ordering Details              | 9 |
| Recommended Wire Bonds 1           | 0 |
| Related Parts1                     | 0 |
| Component Compliance Information 1 | 1 |

## **Revision History**

| Date           | <b>Revision Number</b> | Notes                      |
|----------------|------------------------|----------------------------|
| April 28, 2022 | 1                      | Initial Release            |
| April 12, 2024 | 2                      | Updated Plots and Diagrams |

Mercury ATLA



2 to 18 GHz Slope Correcting Gain Block

### Pin Layout and Definitions

| AM1114C        | $\boxtimes$ |                    |
|----------------|-------------|--------------------|
| 1<br>2<br>3 IN |             | 6<br>5<br>4<br>out |

| Pin Number | Pin Name | Pin Function                     |
|------------|----------|----------------------------------|
| 1          | GND      | Ground – Common                  |
| 2          | RF In    | RF Input – 50 Ohms – DC Blocked  |
| 3          | GND      | Ground – Common                  |
| 4          | GND      | Ground – Common                  |
| 5          | RF Out   | RF Output – 50 Ohms – DC Blocked |
| 6          | GND      | Ground – Common                  |
| 7          | Vd       | DC Power Input                   |

Note: NC pins may be grounded or left open

Mercury ATLANTA

2 to 18 GHz Slope Correcting Gain Block

## **Specifications**

#### **Absolute Maximum Ratings**

|                           | Minimum | Maximum |
|---------------------------|---------|---------|
| Supply Voltage            | -0.3 V  | +3.5 V  |
| RF Input Power            |         | +20 dBm |
| Storage Temperature Range | -55 C   | +150 C  |

**Note:** Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

#### Handling Information

|                                          | Minimum  | Maximum |
|------------------------------------------|----------|---------|
| ESD Sensitivity – Human Body Model (HBM) | Class 0A |         |



Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

#### **Recommended Operating Conditions**

|                            | Minimum | Typical | Maximum |
|----------------------------|---------|---------|---------|
| Supply Voltage             |         | +3.3 V  |         |
| Operating Case Temperature | -40 C   |         | +85 C   |

#### **Thermal Information**

| Thermal Resistance (channel to backside ground)     | 284 C/W |
|-----------------------------------------------------|---------|
| Nominal Junction Temperature at +85C Ambient        | +141 C  |
| Channel Temperature to Maintain 1 Million Hour MTTF | +175 C  |



### 2 to 18 GHz Slope Correcting Gain Block

#### **DC Electrical Characteristics**

(T = 25 °C unless otherwise specified)

| Parameter         | Testing Conditions | Minimum | Typical | Maximum |
|-------------------|--------------------|---------|---------|---------|
| DC Supply Voltage |                    |         | +3.3 V  |         |
| DC Supply Current | VDD = +3.3V        | 56 mA   | 62 mA   | 68 mA   |
| Power Dissipated  | VDD = +3.3V        |         | 205 mW  |         |

#### **RF Performance**

(T = 25 °C unless otherwise specified)

| Parameter       | <b>Testing Conditions</b> | Minimum | Typical | Maximum |
|-----------------|---------------------------|---------|---------|---------|
| Frequency Range |                           | 2 GHz   |         | 18 GHz  |
| Gain            | f = 2 GHz                 |         | 6.3 dB  |         |
|                 | f = 10 GHz                |         | 10 dB   |         |
|                 | f = 18 GHz                |         | 11.4 dB |         |
| Return Loss     | f = 2 GHz                 |         | -11 dB  |         |
|                 | f = 10 GHz                |         | -12 dB  |         |
|                 | f = 18 GHz                |         | -10 dB  |         |
| Output IP3      | f = 10 GHz                |         | 30 dBm  |         |
| Output P1dB     | f = 10 GHz                |         | 17 dBm  |         |
| Noise Figure    | f = 10 GHz                |         | 3.3 dB  |         |

\*Note: OIP3 measured with 10MHz tone spacing with tone level of P<sub>in</sub> = -10dBm





## 2 to 18 GHz Slope Correcting Gain Block

### **Typical Performance**

(VDD = +3.3V, T = 25°C unless otherwise specified)



**Output IP3 vs Temperature** 















### 2 to 18 GHz Slope Correcting Gain Block

### **Typical Performance Continued**

(VDD = +3.3V, T = 25°C unless otherwise specified)







2 to 18 GHz Slope Correcting Gain Block

## **Typical Application**



Note: NC pins may be grounded or left open

### Recommended Component List (or equivalent):

| Part | Value  | Part Number       | Manufacturer |
|------|--------|-------------------|--------------|
| C1   | 100 pF | SKT01A101Z10A6    | Tecdia       |
| R1   | 10 Ω   | TDR-100F-9x12x6-E | Tecdia       |

#### Notes:

- 1. R1 and C1 are required for proper operation of the AM1114-D.
- 2. RF Input and RF Output connections are internally DC blocked.



2 to 18 GHz Slope Correcting Gain Block

## **Die Dimensions**



#### Notes:

1. Units in mm.

### **Part Ordering Details**

| Description                     | Part Number |
|---------------------------------|-------------|
| 1.34mm x 0.91mm Bare Die        | AM1114-D    |
| 3mm 12 Lead QFN                 | AM1114      |
| AM1114 3mm QFN Evaluation Board | AM1114-Eval |





AM1114-D – Amplifier 2 to 18 GHz Slope Correcting Gain Block

# **Recommended Wire Bonds**



#### Notes:

- 1. RF pads should have one bond.
- 2. All RF bonds should be minimum length and minimum loop height for optimum performance.
- 3. Bonds should be 1 mil, gold.

### **Related Parts**

| Part Number |       |           | Description                           |
|-------------|-------|-----------|---------------------------------------|
| AM1102-D    | DC    | to 22 GHz | Low Noise Amplifier                   |
| AM1110-D    | 2 GHz | to 18 GHz | Slope Correcting Amplifier, 9dB Slope |
| AM1113-D    | 2 GHz | to 18 GHz | Slope Correcting Amplifier, 7dB Slope |





### 2 to 18 GHz Slope Correcting Gain Block

## **Component Compliance Information**

**RoHS:** Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

| Substance List                        | Allowable Maximum Concentration |
|---------------------------------------|---------------------------------|
| Lead (Pb)                             | <1000 PPM (0.1% by weight)      |
| Mercury (Hg)                          | <1000 PPM (0.1% by weight)      |
| Cadmium (Cd)                          | <75 PPM (0.0075% by weight)     |
| Hexavalent Chromium (CrVI)            | <1000 PPM (0.1% by weight)      |
| Polybrominated Biphenyls (PBB)        | <1000 PPM (0.1% by weight)      |
| Polybrominated Diphenyl ethers (PBDE) | <1000 PPM (0.1% by weight)      |
| Decabromodiphenyl Deca BDE            | <1000 PPM (0.1% by weight)      |
| Bis (2-ethylheyl) Phthalate (DEHP)    | <1000 PPM (0.1% by weight)      |
| Butyl Benzyl Phthalate (BBP)          | <1000 PPM (0.1% by weight)      |
| Dibutyl Phthalate (DBP)               | <1000 PPM (0.1% by weight)      |
| Diisobutyl Phthalate (DIBP)           | <1000 PPM (0.1% by weight)      |

**REACH:** Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

**Conflict Materials:** Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.